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The principles of linkage disequilibrium mapping of dichotomous diseases can be well applied to the mapping of
quantitative-trait loci through the method of selective genotyping. In 1999, M. Slatkin considered a truncation
selection (TS) approach. We propose in this report an extended TS approach and an extreme-rank-selection (ERS)
approach. The properties of these selection approaches are studied analytically. By using a simulation study, we
demonstrate that both the extended TS approach and the ERS approach provide remarkable improvements over
Slatkin’s original TS approach.

Linkage disequilibrium (LD) mapping has attracted con-
siderable attention from geneticists in recent years.
Thompson and Neel (1997) established that LD between
closely linked genes is a common phenomenon in human
populations. They argued that, for a rare disease, be-
cause it is likely the result of a gene variant of relatively
recent origin, significant LD between markers separated
by a distance �0.5 cM is the usual expectation. In iso-
lated, rapidly expanding populations, the LD is even
more striking. In studies of the Finnish disease heritage,
LD between markers separated by a distance of 3–13
cM has been observed (Peltonen et al. 1995). With the
existence of LD, markers in the vicinity of a disease locus
can be used as surrogates in the detection of the disease
locus. LD mapping has been successfully applied to di-
chotomous diseases (MacDonald et al. 1992; Hästbacka
et al. 1994; Xiong and Guo 1997; Rannala and Slatkin
1998).

LD mapping has also been applied to QTLs. An ap-
pealing method among the existing approaches to LD
mapping of QTLs is to dichotomize the quantitative trait
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so that the same logic as that for dichotomous diseases
applies. Laitinen et al. (1997) used an approach to clas-
sify individuals into a high group and a low group with-
out the use of selection. Slatkin (1999) used a truncation
selection (TS) approach. The TS approach has been con-
sidered by Xiong et al. (2002) for LD mapping involving
multiple QTLs. Their theoretical results showed how the
change in haplotype frequencies caused by TS depends
on the effects of gene substitution at an individual trait
locus and the epistatic effects between trait loci. The TS
approach has been used in other contexts as well (Risch
and Zhang 1995; Szatkiewicz and Feingold 2004).

In this report, we make an extension of Slatkin’s TS
approach. By taking into account the feasibility of the
screening procedure, we also propose an alternative ap-
proach—extreme rank selection (ERS)—for selective ge-
notyping. The properties of these selection approaches
are analytically studied. A simulation study was con-
ducted to compare these selection approaches in terms
of their power in LD mapping.

Let X be the quantitative trait of concern and Q be
the QTL. Denote the genotypes of Q by QQ, Qq, and
qq. Assume that the Q allele is associated with larger
trait values. Let be the frequency of the Q allele. ItpQ

is assumed that is very small. The frequency of thepQ

genotype with l Q alleles is denoted by , and the densitypl

function of the quantitative trait, given this genotype, is
denoted by , where . Let M be a marker inf (x) l p 0,1,2l

the vicinity of the QTL. Denote the genotypes of M by
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MM, Mm, and mm. Suppose that the marker is in LD
with the QTL. Then the genotypes of M will show an
association with the trait. Suppose that the allele M is
linked with the Q allele—that is, M is associated with
larger trait values.

Let b be a specified upper quantile of the trait distri-
bution. By Slatkin’s TS approach, an upper sample is
obtained by screening individuals chosen randomly and
then selecting those with trait values exceeding b. In
addition to the upper sample, a simple random sample
is taken as well. These two samples are then used to test
whether there is association between the quantitative
trait and the marker under investigation. Slatkin estab-
lished that the expected frequency of the Q allele in the
upper sample is given by

�p [f (x) � f (x)]dx∫bQ 1 0Up p p � ,Q Q � �2p f (x)dx � (1 � 2p ) f (x)dx∫ ∫b bQ 1 Q 0

where the second term on the right-hand side of the
equation is positive. The genotype QQ is ignored here
because of its negligible frequency, . Slatkin (1999)2pQ

also derived that the expected frequency of the M allele
in the upper sample is given by

U(p � p )DQ QUp p p � ,M M p (1 � p )Q Q

where D is the disequilibrium measure.
We extend Slatkin’s TS approach as follows. Instead

of a simple random sample, we draw another selected
sample—a lower sample. Besides the upper quantile b,
let a be a specified lower quantile. By the extended TS
approach, randomly chosen individuals are screened,
and those with trait values exceeding b are put into the
upper sample and those with trait values less than a are
put into the lower sample. The two selected samples are
then used for the test. As in the case of the upper sample,
it can be established that the expected frequency of the
Q allele in the lower sample is given by

ap [f (x) � f (x)]dx∫��Q 1 0Lp p p � ,Q Q a a2p f (x)dx � (1 � 2p ) f (x)dx∫ ∫�� ��Q 1 Q 0

where, however, the second term on the right-hand side
of the equation is negative. Similarly, the expected fre-
quency of the M allele in the lower sample is given by

L(p � p )DQ QLp p p � .M M p (1 � p )Q Q

It is clear that the difference in the expected Q-allele (or
M-allele) frequencies between an upper sample and a

lower sample is larger than that between an upper sam-
ple and a simple random sample. The increment in the
difference between the Q-allele (or M-allele) frequencies
accounts for an increment in power for the extended TS
approach.

The ERS approach is as follows. Let k be a specified
integer. For each selection, k individuals are chosen at
random from the population. The trait values of these
k individuals are measured and ordered from smallest
to largest. Then, the individual with rank 1 is selected
as a member of the lower sample and the individual with
rank k is selected as a member of the upper sample.

Let , , , and denote the expectedU L U Lp p p pQERS QERS MERS MERS

frequencies of the Q allele and M allele in the upper and
lower samples obtained by the ERS approach. Our re-
sults, which are derived in appendix A, are as follows:

p p1 2U k�1p � p p kF (x) [f (x) � f (x)]QERS Q � 2 1{ 2

p p0 1� [f (x) � f (x)] dx1 0 }2

k�1� kF (x)p p [f (x) � f (x)]dx , (1)� 0 2 2 0

p p1 2L k�1p � p p k[1 � F(x)] [f (x) � f (x)]QERS Q � 2 1{ 2

p p0 1� [f (x) � f (x)] dx1 0 }2

k�1� k[1 � F(x)] p p [f (x)� 0 2 2

�f (x)]dx , (2)0

DU Up � p p (p � p ) , (3)MERS M QERS Q p (1 � p )Q Q

and

DL Lp � p p (p � p ) , (4)MERS M QERS Q p (1 � p )Q Q

where F is the cumulative distribution function of the
trait X and where the integrals in equation (1) are all
positive and those in (2) are all negative. The equalities
(1) and (2) imply that the ERS approach increases the
frequency of the Q allele in the upper sample and reduces
the frequency of the Q allele in the lower sample. The



Reports 663

equalities (3) and (4) imply that the same is true for the
M allele if the marker is in LD with the QTL.

Slatkin considered three tests for the original TS ap-
proach. These tests can also be applied in the extended
TS approach and the ERS approach. In what follows,
we describe the tests, with slight modifications.

The first test checks for a significant difference in allele
frequencies between the upper sample and the lower
sample (or a simple random sample) by using a classical

statistic. Let and be the sample sizes of the2x n nL U

lower and upper samples, respectively. Let andN NL U

be the numbers of Q alleles (or M alleles) in the lower
and upper samples, respectively. Let

N � NL Up̂ p .
2(n � n )L U

The test statistic is of the form

2 2ˆ ˆ1 (N � 2n p) (N � 2n p)L L U UT p � .1 [ ]ˆ ˆp(1 � p) 2n 2nL U

Under the null hypothesis that there is no QTL (or that
the marker is not in LD with the QTL), has an as-T1

ymptotic distribution with 1 df.2x

The second test checks for a significant difference be-
tween the mean trait values for different genotypes of
the locus under investigation, by use of a t statistic. Only
the upper sample is used in this test. Let denote theX̄l

average trait value and denote the number of zygotesnl

in the upper sample that have l Q alleles (or M alleles),
where . The zygotes with genotype QQ are ig-l p 0,1
nored because of their negligible number. The second
test is based on the t statistic

n n0 1� ¯ ¯(X � X )1 0n � n0 1
T p ,2 s

where

n n0 112 2 2¯ ¯s p (X � X ) � (X � X ) .� �0j 0 1j 1[ ]n � n � 2 jp1 jp10 1

Under the null hypothesis, has an asymptotic standardT2

normal distribution. A one-sided test using is adoptedT2

for testing the null hypothesis. Slatkin originally used
as the test statistic, which is equivalent to a two-sided2T2

test using .T2

The third test is derived from the fact that the first
and second tests are asymptotically independent, as ar-
gued by Slatkin. Let and be the P values of the firstP P1 2

and second tests, respectively. The third test is based on
the statistic

T p �2 ln (P ) � 2 ln (P ) .3 1 2

Under the null hypothesis, has an asymptotic dis-2T x3

tribution with 4 df.
We compare the three selection approaches by using

a simulation study. Hereafter, the original and extended
TS approaches will be referred to as the “TS-I” and “TS-
II” approaches, respectively. To make a fair comparison,
the total sample size n ( ) must be the samep n � nL U

for all the approaches, and the screening size must also
be approximately the same. In the TS-II approach, let
the specified lower and upper quantiles be the tth and

th quantiles, respectively. For the ERS and TS(1 � t)
approaches to have approximately the same screening
size, we take k in ERS to be . Thus, with thek p (1/t)
total sample size n, the screening size for the ERS pro-
cedure is the fixed number , and the screening sizekn/2
for the TS procedures is a random variable with mean

.kn/2
It is assumed, in the simulation study, that the effects

of the QTL alleles are additive—that is, the distribution
of trait X has mean 0, e, and when the genotype of2e

the QTL is qq, Qq, and QQ, respectively. The frequency
of the Q allele ( ) is taken to be 0.01 throughout thepQ

simulation study. To compare the power among the dif-
ferent approaches, we considered the simulation param-
eter values as follows. In the case in which the tested
locus is a marker locus, we take and 0.03;p p 0.01M

, 0.85, and 0.50; and 1.65; and′D p 0.95 e p 1.03
, where . The two values′n p 400 D p D/[p (1 � p )]Q M

of e are chosen such that the heritability is ∼0.02 and
0.05, respectively. In the case in which the tested locus
is a putative QTL, we considered eight values of e in a
range from 0.1 to 1.5, with an equal distance of 0.2
between them. The batch size in ERS, k, is taken to be
10 and 20, and the corresponding t in TS is taken to
be 0.1 and 0.05. The power comparison among the dif-
ferent approaches is meaningful only if the type I errors
are controlled at approximately the same level. Although
the type I errors are controlled at the nominal level as-
ymptotically, we needed to investigate the type I errors
for finite sample sizes. To assess the type I errors, we
simulated data with and and 0.03.e p 0 p p 0.01M

For each set of simulation parameter values, 1,000
replicates of ERS samples and TS samples are generated.
To mimic the implementation in practice, each replicate
of samples is generated as follows. (1) First, copiesnk/2
of ( ) are independently generated, where X is theX, Q, M
trait value and Q and M are the genotypes at the QTL
and the marker, respectively. (2) To obtain the ERS sam-
ples, these copies are divided into sets in sequel,nk/2 n/2
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Table 1

Power Comparison of the Tests at Nominal Level with the TS-I, TS-II, and ERS Approachesa p 0.01

SIMULATED LEVEL (TYPE I ERROR PROBABILITY) OR POWER OF

PARAMETER VALUES

( )p p .01Q Test 1 Test 2 Test 3

k h pM
′D ERS TS-II TS-I ERS TS-II TS-I ERS TS-II TS-I

10 .00 .01 � .005 .003 .005 .008 .015 .015 .022 .023 .028
10 .00 .03 � .007 .008 .007 .014 .012 .015 .010 .012 .010
10 .02 .01 .95 .863 .941 .507 .413 .336 .336 .896 .928 .636
10 .02 .01 .85 .736 .861 .418 .351 .280 .277 .808 .828 .553
10 .02 .01 .50 .250 .362 .134 .164 .148 .147 .366 .385 .250
10 .02 .03 .95 .373 .477 .232 .233 .188 .207 .500 .557 .366
10 .02 .03 .85 .306 .417 .174 .204 .173 .165 .441 .471 .304
10 .02 .03 .50 .094 .113 .061 .079 .082 .084 .144 .169 .107
10 .05 .01 .95 .999 .999 .935 .955 .906 .905 1.00 1.00 .990
10 .05 .01 .85 .985 .997 .885 .927 .876 .856 .999 1.00 .985
10 .05 .01 .50 .599 .745 .435 .655 .604 .582 .861 .878 .782
10 .05 .03 .95 .820 .905 .683 .872 .828 .850 .976 .978 .954
10 .05 .03 .85 .712 .819 .605 .790 .738 .756 .944 .954 .922
10 .05 .03 .50 .255 .346 .191 .438 .403 .417 .562 .589 .525
20 .00 .01 � .005 .004 .007 .014 .014 .014 .023 .027 .029
20 .00 .03 � .009 .009 .007 .012 .011 .013 .011 .012 .014
20 .02 .01 .95 .988 .997 .818 .437 .340 .305 .982 .988 .857
20 .02 .01 .85 .945 .982 .706 .359 .303 .293 .941 .959 .750
20 .02 .01 .50 .461 .585 .297 .184 .164 .167 .543 .584 .365
20 .02 .03 .95 .658 .778 .479 .296 .219 .202 .748 .793 .562
20 .02 .03 .85 .539 .655 .403 .241 .194 .205 .636 .694 .497
20 .02 .03 .50 .156 .211 .121 .124 .109 .098 .239 .269 .177
20 .05 .01 .95 1.00 1.00 1.00 .987 .947 .942 1.00 1.00 1.00
20 .05 .01 .85 1.00 1.00 .999 .971 .904 .901 1.00 1.00 1.00
20 .05 .01 .50 .910 .972 .853 .779 .644 .644 .982 .991 .936
20 .05 .03 .95 .988 .999 .973 .955 .887 .880 1.00 1.00 .996
20 .05 .03 .85 .962 .994 .936 .924 .830 .804 .997 .999 .989
20 .05 .03 .50 .545 .663 .516 .548 .473 .477 .803 .828 .756

each of size k, and the units in each set are ranked with
respect to X, after which the unit with the smallest rank
is put into the lower sample and the unit with the largest
rank is put into the upper sample. (3) To obtain the
upper and lower samples for the TS-II approach, the
first half of the copies are used to estimate the lowernk/2
and upper quantiles. The estimated quantiles are then
used to screen the whole copies, to select the uppernk/2
and lower samples. If !n units are selected when all the

copies have been screened, additional copies ofnk/2
( ) are generated until the total sample sizeX, Q, M
reaches n. (4) For the TS-I approach, the upper sample
is obtained in the same way as in step (3), but the pro-
cedure continues until the upper sample size reaches

. A simple random sample of size is then gen-n/2 n/2
erated separately.

The three tests are performed on the basis of each
sample. The nominal size of the tests is set at a p

. The proportion of rejections of each test with the0.01
same approach among the 1,000 replicates is counted.
In the case , this proportion provides an approx-e p 0
imation of the probability of type I error. In the case

, this proportion provides an approximation of thee ( 0
power of the test. The simulated results for a tested
marker locus are reported in table 1. The entries cor-
responding to in table 1 are simulated levels (i.e.,h p 0
probabilities of type I error) and those corresponding to

are simulated powers. The simulated powers forh ( 0
tested putative QTLs are depicted in figure 1 (see also
the Statistical Source Web site).

The simulated levels when are very close top p 0.3M

the nominal level, 0.01. Although there is some discrep-
ancy between the simulated levels and the nominal level
when , the simulated levels among all threep p 0.1M

approaches are comparable, which implies that the type
I errors for all three approaches are controlled at about
the same level. Since the critical values in all three ap-
proaches are determined by asymptotic theory, we ex-
pect that, when the sample size gets larger, the discrep-
ancy between the simulated levels and the nominal level
would disappear. To investigate this effect, we also sim-
ulated the levels with . It turned out that then p 800
discrepancy disappeared, as expected. We do not present
these results here, for the sake of brevity. Some features
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Figure 1 Power curves of test 3 with the three selection approaches, ERS, TS-II, and TS-I. a, . b, .k p 10 k p 20

of the power comparison can be summarized as follows.
First, both the TS-II approach and the ERS approach
are remarkably more powerful than the TS-I approach
in all cases. Second, when the additional information
contained in the trait observations of the upper sample
is incorporated into the detection of QTLs through test
3, by combining tests 1 and 2, a significant gain in power
can be achieved, especially if the power of test 1 is rel-
atively low and if the ERS approach is used. Third, the
TS-II approach has the largest power, compared with
the other approaches, in all cases. However, the power
of the ERS approach is only slightly smaller than and
thus is quite comparable to the power of the TS-II ap-
proach. Finally, the screening size has a considerable
effect on the powers of the tests. When k is changed
from 10 to 20 (i.e., the screening size is doubled), the
powers are greatly increased.

We conclude this report with some further discussion.
Although the TS-II approach is slightly more powerful
than the ERS approach, it is more difficult to implement
in certain situations than is the ERS. With the TS ap-
proach, a prescreening process is necessary for the es-
timation of the cutoff quantiles if they are not known a
priori, which is usually the case in practice. The selection
procedure can be performed only after the estimated
cutoff quantiles are obtained. For example, in their study

that involved the use of sib pair models for the mapping
of genes that regulate blood pressure, Xu et al. (1999)
prescreened 40,000 individuals to estimate the cutoff
quantiles of blood pressure, whereas 1160,000 individ-
uals were eventually screened to select extremely dis-
cordant sib pairs. In situations like this, to keep the
records of the individuals involved in the prescreening
process and to recall them for genotyping, usually after
quite a long period, is not a simple matter. A sizable
extra cost may be incurred, unnecessary errors may be
caused, some individuals may be lost to follow-up, and
so forth. In contrast, however, the ERS approach does
not require a prescreening process. The selection is done
in batches of k individuals. The number k is usually small
and well within the manageable range. Therefore, if a
large-scale prescreening is needed to estimate the cutoff
quantiles and the process would incur a nonnegligible
cost and other troubles, the ERS provides a reasonable
alternative to the TS-II approach because of its com-
parable power and convenience of implementation.

There are situations in which only a finite population
is of concern in the study and the trait values of the
individuals are completely known. For example, in the
study of serum immunoglobulin E concentration in pa-
tients with asthma conducted by Laitinen et al. (1997),
the study population was a group of 487 asthmatic pa-
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tients, and the serum immunoglobulin E concentrations
in all these patients were known. In such situations, the
TS-II approach can be applied without any screening.
What needs to be done is to order the trait values of all
the individuals and then to take the upper t fraction as
the upper sample and the lower t fraction as the lower
sample.

Another issue is how to determine t (or k) in the
selective-genotyping approaches. From a purely theo-
retical point of view, the smaller the t (or the larger the
k), the more powerful the tests. In practice, however, t

cannot be chosen to be too small. Lander and Botstein
(1989) warned that very extreme trait values might have
causes other than genetic effects. They suggested that the
selected upper or lower percentage should not be !5%.
Subject to this restriction, the determination of t could
be made by a cost consideration. In selective genotyping,
there are two kinds of cost involved: the cost of screening
the trait values and the cost of genotyping the selected
individuals. The power of the tests is determined by both
the sample size n and the selection fraction t (or k),
whereas other factors are fixed. We may assume that the

effects of n and t on the power of tests are independent
from other factors. In the cost consideration, it is more
convenient to consider k than t. Let the power of a test
be denoted by . Let the cost for screening one in-p(k,n)
dividual be denoted by and the cost for genotypingCs

one individual be denoted by . The total cost of theCg

selective genotyping is roughly . WithC p n(kC /2 � C )s g

fixed cost C, can be maximized with respect to kp(k,n)
and n, subject to . For a given pairC p n(kC /2 � C )s g

, the power can be simulated for the partic-(k,n) p(k,n)
ular situation. This procedure can simultaneously de-
termine the desired sample size n and the selection frac-
tion t. We do not elaborate on this procedure here, but
it is worthy of further research.
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Appendix A

Derivation of Results Related to the ERS Approach

Let

1, if the genotype has l Q alleles
d p l p 0,1,2 .l { }0, otherwise

Let be the observation for a randomly chosen individual from the population. Denote by H the(X,d ,d ,d )0 1 2

cumulative distribution function of the nongenetic component of X. Assume that the genotypic values are , d,�a
and a when the genotypes of the QTL are qq, Qq, and QQ, respectively. Let , ,F (x) p H(x � a) F (x) p H(x � d)0 1

and . Denote by , , and their corresponding probability density functions (PDFs). Then theF (x) p H(x � a) f f f2 0 1 2

joint PDF of is given by(X,d ,d ,d )0 1 2

2

g(x,d ,d ,d ) p p d f (x) .�0 1 2 l l l
lp0

The marginal PDF of X is given by

2

f(x) p p f (x) .� l l
lp0

Let F denote the cumulative distribution function corresponding to f. Then . The conditional2
F(x) p � p F (x)l llp0

distribution of , given X, isdl

p f (x)l lP(d p 1FX p x) p .l f(x)

For the QTL, we use the notations and , where and . For the marker, we use the notationsp p l p 0,1,2 r p 1, kl l(r)

and , where and . In these notations, l refers to the number of Q or M alleles and r refersq q l p 0,1,2 r p 1, kl l(r)
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to the samples: 1 for the lower sample and k for the upper sample. For example, is the expected frequency ofp1(k)

genotype Qq in the upper sample. Let denote the rth order statistic of a simple random sample of size k fromX(r)

the distribution of X. Let denote the induced order statistic of .d dl(r) l

We have

p p P(d p 1) p E {E [P(d p 1FX )]}2(k) 2(k) 2(k) (k)

p f (X )2 2 (k)p E
f(X )(k)

p f (x)2 2 k�1p kF (x)f(x)dx� f(x)

k�1p p kF (x) {f(x) � p [f (x) � f (x)] � p [f (x) � f (x)]} dx2� 1 2 1 0 2 0

k�1p p � p kF (x) {p [f (x) � f (x)] � p [f (x) � f (x)]} dx .2 2� 1 2 1 0 2 0

Similarly, we have

k�1p p p � p kF (x) {p [f (x) � f (x)] � p [f (x) � f (x)]} dx .1(k) 1 1� 2 1 2 0 1 0

Thus, we have

1Up p p � pQERS 2(k) 1(k)2

p p p p1 2 0 1k�1 k�1p p � kF (x) [f (x) � f (x)]dx � kF (x) [f (x) � f (x)]dxQ � 2 1 � 1 02 2

k�1� kF (x)p p [f (x) � f (x)]dx . (A1)� 0 2 2 0

Replacing and by and , respectively, we obtainX F(x) X 1 � F(x)(k) (1)

1Lp p p � pQERS 2(1) 1(1)2

p p p p1 2 0 1k�1 k�1p p � k[1 � F(x)] [f (x) � f (x)]dx � k[1 � F(x)] [f (x) � f (x)]dxQ � 2 1 � 1 02 2

k�1� k[1 � F(x)] p p [f (x) � f (x)]dx . (A2)� 0 2 2 0

Since , is increasing, and is decreasing, the integrals in equation (A1) are allk�1 k�1F (x) 1 F (x) 1 F (x) F (x) [1 � F(x)]0 1 2

positive and the integrals in equation (A2) are all negative. In fact, we have, for example,

k�1 k�1 k�1F (x)[f (x) � f (x)]dx p F (x)dF (x) � F (x)dF (x)� 2 0 � 2 � 0

1

k�1 �1 k�1 �1p {F [F (y)] � F [F (y)]}dy� 2 0
0

�1 �1� 0, since F (x) 1 F (x) and hence F (y) � F (y) .0 2 0 2
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The positiveness and negativeness of the other integrals follow similarly.
Let denote the frequency of the M allele and . The haplotypes at the QTL and the marker locusp p p 1 � pM m M

together with their frequencies are given below. Note that D is the measure of LD.

Haplotype Frequency

QM t p p p � D1 Q M

Qm t p p p � D2 Q m

qM t p p p � D3 q M

qm t p p p � D4 q M

Let and . The conditional marker genotype frequencies, given the QTL genotypes, are asa p t /p a p t /p1 1 Q 3 3 q

follows.

MM Mm mm

QQ 2a1 2a (1 � a )1 1
2(1 � a )1

Qq a a1 3 a (1 � a ) � a (1 � a )1 3 3 1 (1 � a )(1 � a )1 3

qq 2a3 2a (1 � a )3 3
2(1 � a )3

Note that, if , then .D p 0 a p a p p1 3 M

For the frequencies with the marker, we obtain from the table above that

2 2q p a p � a a p � a p2(r) 1 2(r) 1 3 1(r) 3 0(r)

and

q p 2a (1 � a )p � [a (1 � a ) � a (1 � a )]p � 2a (1 � a )p .1(r) 1 1 2(r) 1 3 3 1 1(r) 3 3 0(r)

Then, some straightforward algebra yields

q D1(k)U Up p q � p p � (p � p )MERS 2(k) M QERS Q2 p (1 � p )Q Q

and

q D1(1)L Lp p q � p p � (p � p ) .MERS 2(1) M QERS Q2 p (1 � p )Q Q

Web Resources

The URL for data presented herein is as follows:

Statistical Source, http://www.statisticalsource.com/software/
CZGL.sas (for SAS program/macro for the simulation study)

References
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